The Washington State Board of Education

Governance I Achievement I Transitions I Math & Science I Effective Workforce

Title:	Review of Certificate of Academic Achievement Options for End of Course Exams				
As Related To:	 Goal One: Advocate for effective and accountable P-13 governance in public education ☑ Goal Two: Provide policy leadership for closing the academic achievement gap ☑ Goal Three: Provide policy leadership to strengthen students' transitions within the P-13 system ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to make Washington's students nationally and internationally competitive in math and science ☑ Goal Four: Promote effective strategies to develop the most highly effective strategies to make Wash				
Relevant To Board Roles:	☐ Policy Leadership ☐ Communication ☐ Convening and Facilitating ☐ Convening and Facilitating				
Policy Considerations / Key Questions:	Increasing numbers of students projected to access Certificate of Academic Achievement (CAA) options, and the associate cost of providing the options, could lead to a consideration of policy change by the 2013 Legislature.				
Possible Board Action:	Review Adopt Approve Other				
Materials Included in Packet:	 ✓ Memo ☐ Graphs / Graphics ☐ Third-Party Materials ✓ PowerPoint 				
Synopsis:	The graduating classes of 2013 and 2014 will be required to pass one mathematics End of Course (EOC) exam; the graduating class of 2015 and beyond will need to pass two mathematics EOCs and one biology EOC. With these new requirements, more students are likely to participate in the approved alternative assessment options: 1) alternative assessments (ACT/SAT/approved subject AP tests); 2) grade comparisons; and, 3) Collections of Evidence (COE). Of these, COEs are likely to draw the most participants. Staff will provide a preliminary projection through 2015 of the numbers of COEs and an estimate of their cost.				

The Washington State Board of Education

Governance | Achievement | Transitions | Math & Science | Effective Workforce

Review of Certificate of Academic Achievement (CAA) Options for End of Course Exams

Policy Consideration

Washington State did not require students in the class of 2012 and prior to pass a state mathematics exam or science exam for graduation. RCW 28A.655.066 (2) adds additional requirements to graduating classes in 2013 and 2014: students in these classes will need to pass one mathematics End of Course Exam (EOC) as a graduation requirement. Starting with the class of 2015, students will need to pass two mathematics EOCs (RCW 28A.655.066 (3)) and one science EOC to graduate (28A.655.061 (4)).

As EOCs become part of graduation requirements, large increases in the number of students accessing approved alternatives to state assessments are projected.

The cost of providing alternative assessment options, particularly Collections of Evidence (COEs), to increasing numbers of students could prompt a consideration of policy change by the 2013 Legislature.

Summary

Districts award a Certificate of Academic Achievement (CAA), or Certificate of Individual Achievement (CIA) for students with an Individualized Education Program, to students who pass the state assessments required for graduation. The state has approved alternatives to state assessments, allowing students options for earning their CAA or CIA. Approved alternatives (CAA Options) are shown in the table below.

CAA Options	
Collection of Evidence	 An evaluation of a set of work samples based on classroom work prepared by the student with instructional support from a teacher
Qualifying Score on an Approved Test	 ACT SAT Approved subjects in an Advanced Placement (AP) test
Grade Comparison	 A student's grades in a subject are compared to the grades of other students who took the same course and passed the state exam in that subject The comparison is conducted by school district personnel This option is only available to 12th graders with a grade point average of 3.2 or above

Legislation postponed required mathematics and science assessments in 2007 and again in 2011 (see the Background section below), so alternative assessments in mathematics and science have never been fully implemented.

The table below shows the numbers of SAT, ACT and AP scores, and grade comparisons submitted as approved alternative assessments in 2011-2012.

CAA Option Program	Approved by Content Area	Percent of Students who Took the Assessment
ACT, SAT, AP Tests		
Math Approved	738	1.1%
Reading Approved	1,098	1.4%
Writing Approved	785	1.0%
Grade Comparison		
Math Approved	207	0.2%
Reading Approved	11	0.01%
Writing Approved	7	0.01%

It is likely that the number of grade comparisons in mathematics will increase in 2012-2013, since seniors will need to pass the mathematics assessment to graduate. This could cause some extra demands on districts' staff time, since district staff performs the grade comparison.

Overall, the percent of students participating in these CAA options are small. The addition of the EOCs in mathematics and science as graduation requirements may result in a significant increase in the number of students participating in these options, but it is likely to remain a small percent of total students who take the assessments.

Of the CAA Options, Collections of Evidence (COE) are the most numerous for reading and writing, and are likely to be very numerous for mathematics and science.

Students submitted mathematics COEs in 2009 as an alternative to the high school mathematics High School Proficiency Exam (HSPE). Because the COE for the HSPE was for a comprehensive test that was not required for graduation, it is not directly comparable to the COEs students will be attempting in 2013. However, the number of students who participated in this option for mathematics in 2009 may be an indication of how many students will use COEs as an option in 2013. In 2009, 76,576 students attempted the 10th grade mathematics HSPE; 9,448 COEs were scored in mathematics or 12.3 percent of the total number of student who took the mathematics assessment.

The attached chart illustrates the number of collections of evidence from 2009 to 2011, and projects numbers (based on the assumptions listed below the chart) for 2012 to 2015. This chart is a preliminary projection for the purposes of discussion only.

The current budget allots \$400 per collection, with \$200 going to the district, and \$200 going to OSPI to fund the contract for grading. The attached preliminary projection chart shows approximately 28,728 mathematics and science COEs in 2015. With the current budget cost, this represents about \$11.5 million in additional cost for COEs in mathematics and science, or \$13.6 million for all the subject areas.

Demographic data on student participants in reading and writing COEs suggest that these COEs serve under-represented student populations at a significantly higher rate than the general student population. In February 2011, students participating in reading and writing COEs were 65.7 and 70.3 percent low income students respectively, compared to 43.7 percent low income in the general student populations. Hispanic students, black students, and bilingual/English language-learners also participated in COEs at a disproportionally high rate.

Background

SBE is authorized by RCW 28A.230.090 to set high school graduation requirements, including the certificate of academic achievement and certificate of individual achievement (RCW 28A.230.090 (1)(b)).

The Superintendent of Public Instruction is required to consult with the SBE on the assessment system (RCW 28A.655.070(3)(a)):

In consultation with the state board of education, the superintendent of public instruction shall maintain and continue to develop and revise a statewide academic assessment system in the content areas of reading, writing, mathematics, and science for use in the elementary, middle, and high school years designed to determine if each student has mastered the essential academic learning requirements identified in subsection (1) of this section. School districts shall administer the assessments under guidelines adopted by the superintendent of public instruction. The academic assessment system may include a variety of assessment methods, including criterion-referenced and performance-based measures.

It is also the responsibility of SBE to identify scores students must achieve to meet the standard on statewide student assessments for high school students to obtain a certificate of academic achievement (28A.305.130 (4)(b)). Cut scores for COEs in reading and writing were approved by SBE in April 2008. The Board will be asked to approve the standard setting process and cut scores for alternative assessments to the mathematic EOCs at the November 2012 Board meeting.

Legislation postponed implementation of mathematics and science assessments as a graduation requirement with ESSB 6023 in 2007, and again in 2011, with HB 1412 and ESHB 1410. Assessments in mathematics required for graduation for the graduating classes of 2013, 2014, and 2015 are specified in RCW 28A.655.066(2) and (3). Assessments in science required for graduation for the graduating class of 2015 is specified in RCW 28A.655.06 (4).

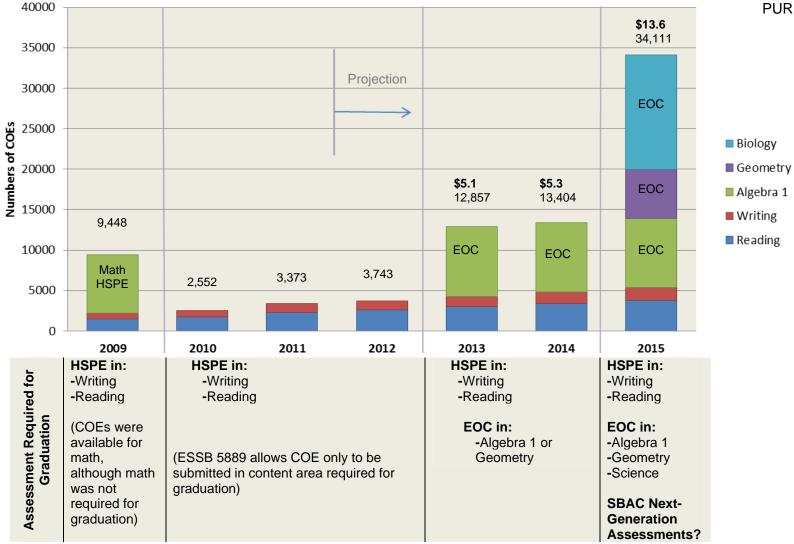
Video of the Senate floor debate on ESSB 6023 is available on TVW at http://tvw.org/index.php?option=com_tvwplayer&eventID=2007040142B, at 1.06.50 on the timer and video of the House of Representatives floor debate on ESHB1410 is available at http://tvw.org/index.php?option=com_tvwplayer&eventID=2011050127B, at 29.30 on the time.

The table below highlights some of the legislation establishing the current required assessments and alternative assessments.

Legislation	Year	Highlights
3ESHB 2195	2004	 Established the Certificate of Academic Achievement Made the CAA (or CIA) a graduation requirement for the class of 2008, including mathematics assessments Made science assessment a graduation requirement for the class of 2010 Directed OSPI to develop alternative assessments
ESSB 6475	2006	 Directed OSPI to implement alternative assessment methods Grade Comparison Collection of work CTE Collection of work PSAT,SAT, ACT comparison
ESSB 6023	2007	 Students can graduate without a CAA by taking one math credit after the 11th grade for the class of 2008, and two math credits after the 10th grade for the classes of 2009 to 2012; mathematics assessment as a graduation requirement moved to class of 2013 Moved science assessment from 2010 to 2013 as a requirement Set GPA requirement of 3.2 as a student eligibility requirement for the grade comparison alternative assessment
ESHB3166	2008	 Directed OSPI to develop statewide EOCs for high school math Established EOCs as a requirement for the class of 2013
2ESHB 1087 section 513 (budget bill)	2011	 Mandated that a student may submit only one collection of work per content area
HB1412	2011	 Students in the graduating classes of 2013 and 2014 must meet the state standard on one high school math EOC rather than two
ESHB1410	2011	 Students must meet the state standard on the science assessment as a requirement of the class of 2015 rather an the class of 2013 The science assessment will be a biology EOC AP exams added to the list of approved alternative assessments

Washington State is one of nine states that require an EOC as a graduation requirement. Of these, four have programs similar to Collections of Evidence. The table below lists the other states and their required EOC assessments and alternatives assessments.

State	End of Course Exams Currently required for Graduation	Options for Students Who Do Not Pass	Source
ARKANSAS	English II Algebra I	Remediation and multiple retakes Alternative assessments: ACT, SAT, IB	Arkansas Rule
FLORIDA	Algebra I Geometry Biology I	Multiple retakes Alternative assessments: ACT, SAT	Florida Comprehensive Assessment Test FAQ Graduation


			Requirements for Florida's Statewide Assessments
INDIANA	English 10 Algebra I	Demonstrate mastery of standards by evidence waiver or work-readiness waiver (to be eligible, must retake, GPA, attendance, teacher/administrator recommendations)	Indiana Department of Education website
MARYLAND	English Algebra/Data Analysis Biology Government	Multiple retakes Bridge Plan (eligibility requirements plus project evidence)	Maryland High School Assessments website
MASSACHUSETTES	Pass one of: Biology Introductory Physics Chemistry Technology/Engineering	MA Comprehensive Assessment System (MCAS) Portfolio Appeal consisting of the student's current or cumulative work in a content area	MCAS Performance Appeals website
MISSISSIPPI	English II Algebra I Biology I US History from 1877	Multiple retakes	Mississippi Subject Area Testing Program Second Edition Student/Parent Information Guide
NEW YORK	English Mathematics (Integrated Algebra, Geometry, OR Algebra 2) Science (choice of several) US History and Government Global History and Geography	Alternative assessments: AP, SAT, IB	Part 100 Regulations 100.5 Diploma Requirements
OKLAHOMA	English II Algebra I Two of: English III Algebra II Geometry Biology US History	Multiple retakes Demonstrate mastery of subject matter through an end of course project	Oklahoma School Testing Program FAQ

<u>Action</u>

No action is required at this time

Number of Collections of Evidence (COE), with Projected Estimated Cost in Millions of Dollars

PRELIMINARY PROJECTION FOR DISCUSSION PURPOSES

Assumptions

- 1. The total number of students taking assessments will be approximately 80,000 per year.
- 2. The percent that do not meet standard and chose to take the COE will be 30 percent for math, 60 percent for science.
- 3. Students will attempt COEs in their senior year.
- 4. The number of Reading and Writing COEs will continue to increase linearly through this period.
- 5. The cost per COE will be \$400.
- 6. The pass rates for math and science used for this estimate is the pass rate for the first year of the Algebra 1, Geometry, and Biology End-of-Course (EOC) assessments.
- 7. The pass rate used for Reading and Writing is the average pass rate for the Reading and Writing HSPE from 2009 to 2011.

EXAMPLE OF MATHEMATICS COLLECTION OF EVIDENCE

The Following 26 Pages Includes Student Work from Mathematics Collection of Evidence Task Development

- Each student collection consists of 6 to 8 work samples
- Each work sample is related to Performance Expectations of the Washington State Mathematics Standards
- The Inclusion Tasks were submitted by teachers throughout the state, have undergone a peer review process, and are edited to ensure alignment with standards.

Review of Certificate of Academic Achievement (CAA) Options for End of Course Exams

Prepared for September 26, 2012 Board Meeting Linda Drake, Senior Policy Analyst

Why should the Board concern itself with Certificate of Academic Achievement (CAA) options?

The CAA (or Certificate of Individual Achievement) is a Graduation Requirement

New CAA assessments will lead to a surge in students participating in assessment options, particularly Collections of Evidence (COE)

Collections of Evidence are costly, and the Washington Legislature will be examining costs

The Board may want to take a position

What is the Board's role in state assessment?

RCW 28A.230.090 SBE is authorized to set high school graduation requirements

RCW 28A.655.070(3)(a)

- SPI, in consultation with SBE, shall maintain, continue to develop and revise a statewide academic assessment system
- The assessment system may include a variety of assessment methods

RCW 28A.305.130 (4)(b) SBE is responsible for identifying scores students much achieve to meet standards on statewide assessments to obtain a CAA

Assessments and Legislation

3ESHB 2195 ESSB 6023 ESHB 3166 ESHB 1410 HB 1412 2004 2005 2006 2007 2008 2009 2010 2011

- CAA graduation requirement for class of 2008
- Science assessment for class of 2010
- Directed OSPI to develop alternative assessments

- Moved math assessment as a requirement to class of 2013
- Moved science assessment from 2010 to 2013
- Established math credit as option to assessment for classes of 2008-2012

Directed OSPI to develop End of Course (EOC) exams for math for the class of 2013

Students in class of 2013 and 2014 need to take one EOC rather than two

- Moved science assessment to class of 2015
- The science assessment will be a biology EOC

Assessments required for graduation

Class of:

2012

- No EOCs required
- Reading and Writing HSPE

2013

- 1 math EOC
- Reading and Writing HSPE

2014

- 1 math EOC
- Reading and Writing HSPE

2015

- 2 math EOCs
- 1 biology EOC
- Reading and Writing HSPE

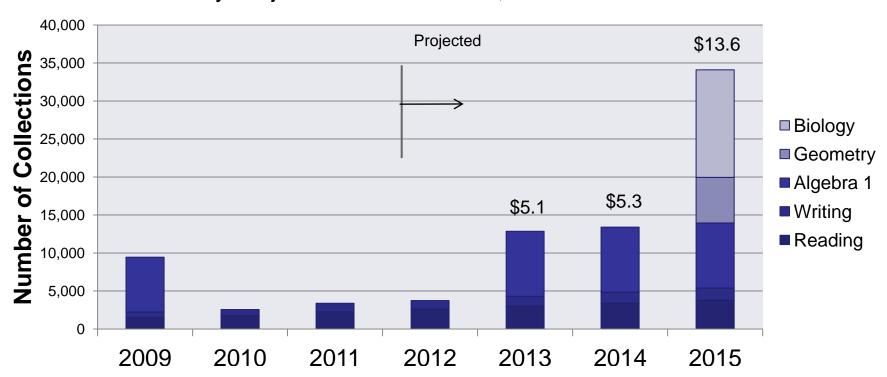
Note: Smarter Balanced Assessment (SBAC) will be fully implemented in 2014-2015

Approved alternatives to state assessments

Collection of Evidence	 An evaluation of a set of work samples based on classroom work prepared by the student with instructional support from a teacher
Qualifying Score on an Approved Test	 ACT SAT Approved subjects in an Advanced Placement (AP) test
Grade Comparison	 A student's grades in a subject are compared to the grades of other students who took the same course and passed the state exam in that subject The comparison is conducted by school district personnel This option is only available to 12th graders with a grade point average of 3.2 or above

How many students participate in alternatives?

The Number and Percent of Students Participating in CAA Alternatives in 2011


	Mathe	matics	Reading		Writing		
	Number	Percent	Number	Number Percent		Percent	
ACT/SAT/AP	738	.9%	1,098	1.3%	785	1%	
Grade Comparison	207	.2%	11	.01%	7	.01%	
Collections of Evidence			3,042	3.7%	1,549	1.9%	

The percent is relative to the total 10th grade enrollment: 81,435

Collections of Evidence for mathematics was available for the mathematics HSPE in 2009. Number of mathematics collections scored in 2009: 7,764 (9.3% of total 10th grade enrollment in that year).

How many students will participate in COEs for mathematics and science, and how much will it cost?

Preliminary Projection for Discussion, Cost in Millions of Dollars

Assumptions:

The total number of students taking assessments will be approximately 80,000 per year.

The percent that do not meet standard and chose to take the COE will be 30% for math, 60% for science.

Students will attempt COEs in their senior year.

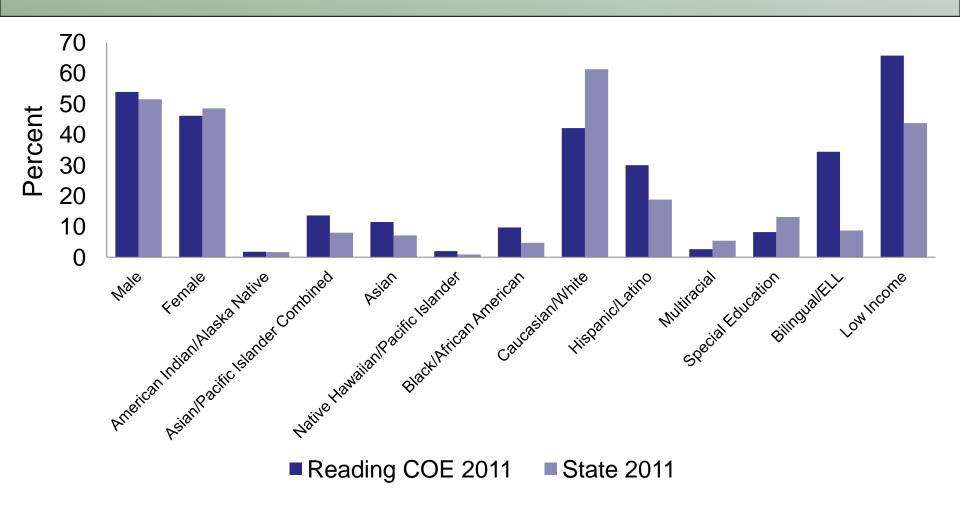
The number of Reading and Writing COEs will continue to increase linearly through this period.

The cost per COE will be \$400.

The pass rates for math and science used for this estimate is the pass rate for the first year of the Algebra 1, Geometry, and Biology End-of-Course (EOC) assessments.

The pass rate used for Reading and Writing is the average pass rate for the Reading and Writing HSPE from 2009 to 2011.

A closer look at COEs


Average Passing Rates, 2009-2011

Some students who participate in COEs have the opportunity to take the state assessment after having submitted a COE. In the table below, students who pass the state assessment after submitting a COE are counted as a "pass".


	Math	Reading	Writing
2009	85.2%	75.8%	67.5%
2010	Not available	84.8%	60.2%
2011	Not available	86.1%	69.6%
Average	85.2%	82.3%	65.8%

Note: the 2011 state assessment pass rate was 82.6% for reading, 86.3% for writing.

Demographics of students who participate in COEs

Some educators' views

Process of teaching COEs lead to many students passing the assessment

"The value of the Collection of Evidence is in the process of teaching the students how to respond to well crafted and practiced work samples. The learning that happens throughout this process helps the student understand and master the targets and strands in each content area so they most often actually pass the assessment as they are completing the COE. For whatever reason, the skills necessary to pass the exam have escaped these students in their prior education. Helping, scaffolding, and re-teaching has proved very successful with the COE."

Wenatchee Principal

Some educators' views

Value for ELL population

"Collection of Evidence has proved invaluable for many Seattle students. None have benefited more than our ELL population. To have the time to review, rewrite, and take the needed time when translations are involved, allows these students to demonstrate their knowledge successfully beyond a one-test day scenario....If our goal is to serve all students and move them beyond high school, the Collection of Evidence is a viable part of the state requirements."

Seattle School District Counselor

Value as an alternative

"The COE has been an extraordinary value as an alternative assessment. It is vital to continue this avenue (and expand it if possible) for students to access the assessment."

District Assessment Coordinator

Summary

Surge in students

New CAA assessments will lead to more students using CAA options, particularly COEs

Effective alternate instruction

Educators find COEs valuable in helping struggling students meet standards

Opportunity gap

A higher percentage of low-income and minority student groups are served by COES than the general student population

Cost

Are COEs worth the investment of state resources?

Questions for Discussion

Does the Board want to take a position?

What further information would be useful for the Board concerning the state assessment system?

What other assessment system changes could impact this situation?

- SBAC/Common Core Transition
- Next Generation Science Standards?
- Additional EOCs?

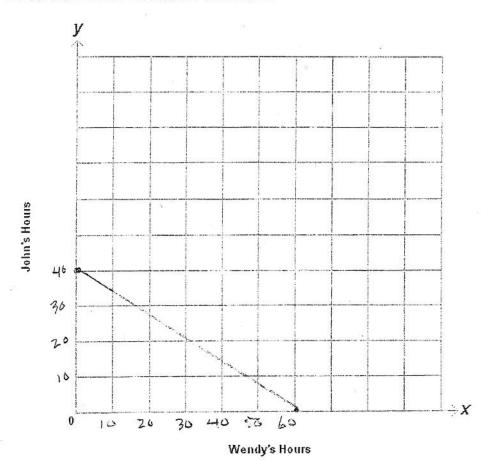
For Planning Purposes Only – Not to be included in Student Collections

Algebra Work Sample Documentation Planning Form

To b	e scored, the collection must include:
_	a minimum of six (6) and a maximum of eight (8) work samples
	at least two (2) different demonstrations of all four strands across the whole breadth and depth of the collection
	at least two (2) on-demand work samples (from two different strands)
	two (2) examples across the collection of process PEs to meet sufficiency purposes only
	two (2) examples across the collection of content-specific course material to sufficiency purposes only
	the entire task, directions or questions that accompany each work sample
The	work sample must include: I work that encompasses the entire performance expectation

		Reportin	g Strands	Alle Lutte To	Sufficie	ency Only	
Title of Algebra Task	Numbers, operations, expression and variables	Lincar equations and inequalities	Characteristics and behaviors of linear and non-linear functions	Data and statistics	Process (Sufficiency only)	Course Specific Content (sufficiency only)	On Demand
1. Building a House		A1.4.B	A1.3.C				
2. How Close is Lightning		A1.1.B	A1.3.C	A1.6.D			a
3. Pre Season Football		A1.1.C		A1.6.B	A1.8.A		
4. Skate Park	A1.2.B				A1.8.A, B	A1.5.A	
5. Goat Circles	A1.7.D				A1.8.C, E		
6. Safe Driving	A1.7.D	A1.1.C	A1.3.B			A1.1.D	
7.							
8.							

Building a House


Don is two weeks away from finishing building a house and needs to hire one or more workers. He reads through the local paper and finds two people, Wendy and John, who are advertising for construction work. Wendy has construction experience and charges \$15 per hour. John has less experience than Wendy and is charging \$10 per hour.

(A1.4.B)(M1.3.D)

1a. Don wants to graph the combinations of the number of hours he can hire Wendy compared to the number of hours he can hire John. Don has budgeted \$600 to hire workers. Don realizes, at the extremes, he could hire only Wendy to work for 40 hours or hire only John to work for 60 hours. Don writes the ordered pairs (40,0) and (0,60) to represent these two extremes, where the x-value represents the number of hours Wendy works and the y-value represents the number of hours John works.

Graph the line that passes through the points (40,0) and (0,60).

Be sure to include scales for both axes.

Inclusion Task

1b. Write an equation in slope-intercept form that represents a line that passes through the points (40,0) and (0,60).

Equation:		
$\lambda = Wx + P$	17=3×+6	50
Slope = rite		
The	9	
- 4-6-6		

1c. Rewrite the equation from slope-intercept form to standard form.

Show the algebraic steps you took to rewrite the equation.

$$\frac{43x+4=33x+4=b}{-33x}$$

$$\frac{43x+4=b}{3x+4=b}$$
Equation:
$$\frac{2}{3}x+4=b$$

(A1.3.C)(M1.2.C)

Don decides to hire both John and Wendy for two weeks of work. Don uses the function $f(x) = -\frac{2}{3}x + 40$, where x is the number of hours John works and f(x) is the number of hours Wendy works, to determine the relationship between how many hours each person works. Don plans to have John work 43.5 hours during the two weeks.

Evaluate f(43.5).

Show how you algebraically solved the problem.

$$f(A) = \frac{1}{3}x + 40$$

$$f(A) = \frac{1}{3}(43.5) + 40$$

$$f(A) = \frac{1}{3}(43.5) + 40$$

$$f(A) = \frac{1}{3}(43.5) + 40$$

2b. Explain what the value of f(43.5) represent?

f(x) is tidendy in ours. The regulation
f(x) = -2/2+40 sugs x = Johns how
and f(x)= Wendys. When x=43.5
(Don's hour) then by silving I
opt the wendy's hours. (+x)

Inclusion Task

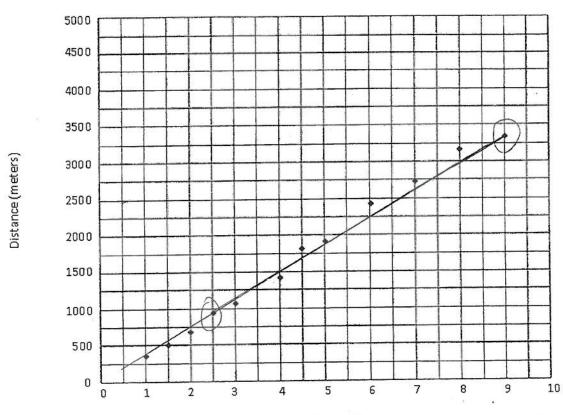
2c. Don uses the function $f(x) = -\frac{2}{3}x + 40$, where x is the number of hours John works and f(x) is the number of hours Wendy works, to determine the relationship between how many hours each person works. At the end of two weeks, he finds that Wendy has worked 26 hours.

Solve for f(x) = 26.

Show how you algebraically solved the problem.

$$\frac{4}{4} = \frac{1}{3} \times \frac{1}{40} = \frac{1}{2} = \frac{$$

2d. What does the solution to f(x) = 26 represent?


f(x)=26 is the hour wendy hour	5.
When I Solve for & I show	lel
act Than hours	
	5)

Inclusion Task

How Close is Lightning?

During a thunder storm, Cindy uses a stopwatch to time (in seconds) from when she sees a flash of lightning to when she hears the crash of thunder. The next day, she uses a map and a ruler to determine the distances to the lightning strikes. The time between the lightning and the thunder, in seconds, and the distance from Cindy, in meters, are graphed in the scatterplot.

How Close is Lightning?

× 1a. Use a fuler and draw ā line that fits the data in the scatterplot. $\frac{3200 - 1000}{9 - 2.5} = \frac{2200}{6.5} = 339.5$

1000= 338.5(2.5)+6 DRAFT 1000 = 840.25 +6 -846.25 -816.15

153.75 = 6

Time (seconds)

7=338.5× + 153.75

(A1.6.D)

2a. What is an equation for a line that fits the data in the scatterplot? $\gamma = 338.5 \times + 153.75$

y = Distance in Maters x = seconds

Be sure to define any variables you use.

Variables: Y= DIStance in meters

X= Seconds

2b. Describe what the slope of the line represents in the situation.

how many meters the lightney
travels a cecond.

2c. Describe what the y-intercept of the line represents in the situation.

y= +w distance the lighting traveled

in x " amount of seconds

□ On-demand

2d. The next night, there was another thunderstorm. Cindy saw lightning strike the top of Cougar Mountain which she knows is approximately 4,500 meters away from her. She, however, did not have a stopwatch to time from when she saw the lighting to when she heard the thunder.

Using the equation you wrote, predict how many seconds would pass between the lightning and thunder when the distance to a lightning strike is 4,500 meters.

Show the steps you used to solve the equation.

4500 = 338.5× + 153.75 -153.75	
4346.25 = 338.5 × 338.5 333.5	×
seconds = x	
	b

2e. Cindy runs to get her stopwatch so she can time from when she sees the lightning strike to when she hears the thunder. On the next lightning strike she sees, she times 14 seconds until she hears the thunder.

Using the equation you wrote, predict the distance to a lightning strike when the time between the lightning and the thunder is 14 seconds.

Show the steps you used to solve the equation.

$\gamma = 338.5(14) + 153.75$ $\gamma = 5439 + 153.75$
y= 5+39 + 153.75
Y= 5592.7 meters

In dry, 68° F air, sound travels approximately 343.2 meters per second. The equation f(t) = 343.2t where f(t) is the distance, in meters, and t is time, in seconds can be used to model the relationship between distance and time for the speed of sound.

(A1.3.C)

3a. Evaluate f(14).

Show your work algebraically.

$$f(14) = 343,2(14)$$

 $f(14) = 4804,8$ meters

3b. What does the value of f(14) represent?

The	number	05	specials.	
,			,	
		<u> </u>		

3c. Solve f(t) = 4,500.

Show your work algebraically.

$$\frac{4500 = 343, 2 \pm}{343, 2}$$
 $\frac{343, 2}{13.1 = \pm}$
Seconds

3d. What does the solution of f(t) = 4,500 represent?

-f(+) =	4500	15	The	dictanc	e 1h	neters	tha
tru	sound	1	ravel	ed.			
				-		- Alexander de la companya de la com	

Pre-Season Football

□ On-demand

(A1.1.C, A1.6.B)

Pre-Season Football

Bob and Jim are getting ready for football season. Bob wants to lose weight but Jim wants to gain weight. Trainer Sue weighed both players and developed weight loss and gain plans for each player.

Bob

Jim

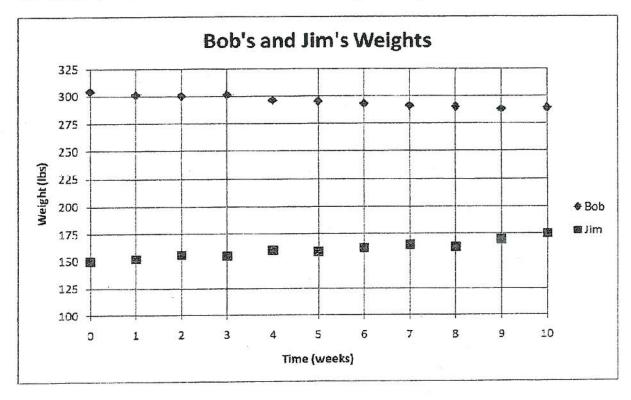
Starting weight: 304 lbs

Starting weight: 150 lbs

Weight loss: 1.25 lbs per week

Weight gain: 0.75 lbs per week

(A1.1.C)


1a. Bob and Jim start Trainer Sue's weight plan at the same time.

When Bob loses and Jim gains weight according to Trainer Sue's plan, after how many weeks will Bob and Jim weigh the same amount?

- Write a system of equations that represents Bob's and Jim's weight each week if they follow Trainer Sue's plan. Be sure to define the variables you use.
- Show the steps you used to solve the system of equations.

System of Equations: Substitution
Variables: X = Weight
9 = amount
y= 150(.012)+.75 Sim=y=50/+.75
y: 2.55] 304 x - 1.25 = 156 x + .75 + 1.25 + 11.25
304x = 150x + 2

The scatter plot shows Bob's and Jim's actual weight during the first 10 weeks.

(A1.6.B)

2a. Based on the data, which football player better followed Trainer Sue's weight plan?

Use specific data from the scatter plot and Trainer Sue's plan to support your answer.

The footical player who followed Trainer Sue's Plan was Bob because the John Shows Minn Constantly lossing weight and not guinny it.	Trainer Sue's Dian ims Bob because the
and not guining it.	and not guining it.
and not guining it.	and not guining it.
	v v

Skatepark

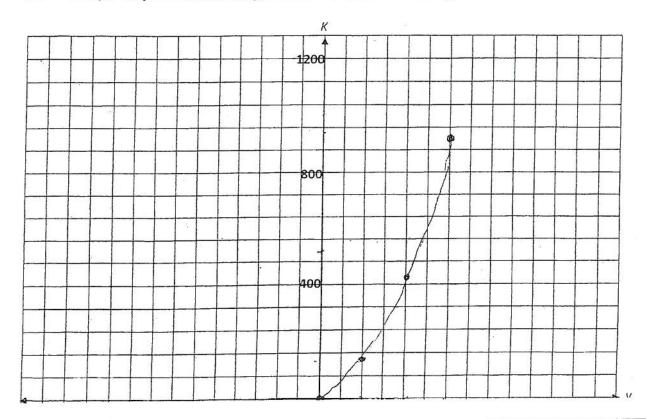
Homelink G

At the Rotary Skatepark, Taryn and Jaden are practicing their ramp skills. At the top of the ramp, their potential energy is given by the formula P = 9.8mh where P is potential energy in Joules, m is mass in kilograms, and h is height in meters. At the bottom of the ramp, their kinetic energy is given by the formula $K = \frac{1}{2}mv^2$ where K is kinetic energy in Joules, m is mass in kilograms, and v is velocity in meters per second.

(A1.5.A)

1a. Taryn's mass is 52 kilograms.

Complete the table to show Taryn's kinetic energy at the bottom of the ramp as a function of velocity.


Be sure to include at least 5 different velocities.

.5.52.V2 -P K=26 v2

Taryn's Energy

Velocity (m/s)	0	2	4	6	8
Kinetic Energy (Joules)	0	104	416	936	1664

1b. Graph Taryn's kinetic energy, K, as a function of velocity, v.

1c. Describe how the values in the table in 1a are represented in the graph in 1b.

In the avanh the values in the
table are represented as points
In the graph, the values in the table are represented as points on the place where their
velocity and Kinetic energy meet
on the graph.
Ort - True Of - True

1d. Describe what one point on the graph means in the context of the situation.

One mint on the araph shows	
One point on the graph shows Taryn's velocity and Kinetic energy at a certain point	
theran at a clirtain point	
in time.	

(A1.2.B)

2. Taryn needs to reach a velocity of 10 m/s at the bottom of the ramp to complete a trick. Kinetic energy at the bottom of the ramp equals potential energy at the top of the ramp.

(P=9.8·m·h)

Q=509.6

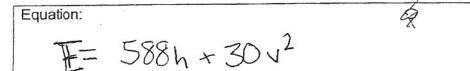
M

What is the minimum height, to the nearest tenth of a meter, on the ramp Taryn needs to start to reach a velocity of 10 m/s? (4) $26\sqrt{2} - 509.6$

Show your work using words, numbers, and/or diagrams.

 $\frac{2600 = 509.6 \text{ h}}{509.6}$ $\frac{509.6}{5.102040816} = \text{h}$

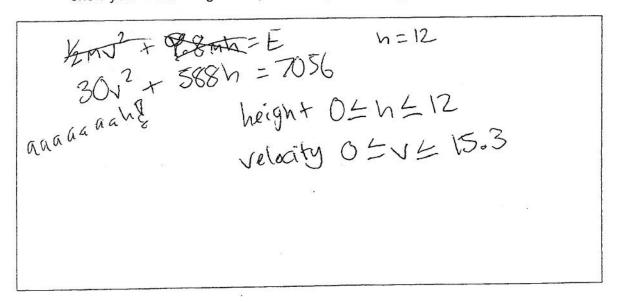
h=5


(A1.5.A)

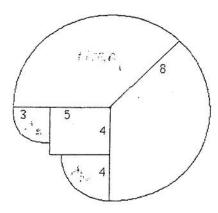
Jaden's mass is 60 kilograms. On any point of the ramp, Jaden's total energy is the sum of his potential energy and his kinetic energy.

Let E represent Jaden's total energy.

Let E represent Jaden's total energy. $E = \frac{1}{2} \times \sqrt{\frac{2}{30}} = \frac{30}{30} \sqrt{\frac{2}{30}}$


Write an equation to represent Jaden's total energy at any point on the ramp as a function of his height, h, and velocity, v.

(A1.2.B)


- During one trick, Jaden generated a total energy of 7,056 Joules.
 - Determine all possible heights that could result in a total energy of 7,056 Joules.
 - Determine all possible velocities that could result in a total energy of 7,056 Joules.

Show your work using words, numbers, and/or diagrams.

Goat Circles

A goat is tied to the corner of a 5-by-4-meter square shed by a 8-meter piece of rope. The goat grazes on the grass causing what looks like perfectly circular designs. The farmer is interested in just how much grass the goat has consumed since being tied up to her shed. The goat can walk around the far corners as far as the rope will allow. Along the top side, five meters of rope will be stretched along the side, leaving another three meters "in play"; along the right-hand side, four meters will have been used, leaving another four meters. (See the diagram below. All measurements in the drawing are in meters.)

(A1.7.D, A1.8.E)(M1.6.D, A1.8.E)

- 1a. Calculate the largest area the goat has available to graze in.
 - Write the equations you used to solve the problem. List and define all variables.
 - Show the steps you used to solve the equations. Be sure to identify the variables used in the equations

Equations used:	Shed = Lxw	ij.
CR = Tr 12	A	
***	3	
Variables:		0
Cy=Hange with	T= 7.14 reradius of	and Laterath

- 1b. Calculate the smallest area the goat has available to graze in.
 - Write the equations you used to solve the problem. List and define all variables.
 - Show the steps you used to solve the equations. Be sure to identify the variables used in the equations.

Equations used:	3.4		
Caroke Trip			
ń		*	
			e e
*			
Variables:			
Cooker Horn of circle, To 7.	14 reradius.	2	
Show your work here:	2.14		
Curcle out v2			
brole = (3.14)(32)			
		ĺ	
Cerolin = 28.26 m2.			
Only use a quarter of the	21-trahen	50	
so divide by 4,			
4800 = (7.06 Tm	3) Smollest open		
			

- 1c. Calculate the entire area the goat has available to graze in.
 - Write the equations you used to solve the problem. List and define all variables.

 Show the steps you used to solve the equations. Be sure to identify the variables used in the equations.

variables used in the equation	ns.	5) (5)
Equations used:	A	
and still	Carrie = 14 (43)	
r i	2. \$ CA 24	
Clases & Otto 1 apr = Total.	subject a spenish of ever	la,
ation of other super = Total.	, , , , , , , , , , , , , , , , , , , ,	250
	=======================================	
Variables:	э.	
Tr 13.14 ye radius area a 18 kgrost	there were thousand were	it.
Show your work here:		
Total = arm, + was, + was	20. 2	ži.
15 - 72.56 +	7.065	
= 200.585m²		
		(C)
<u>.</u>		
		*

(A1.8.C)(M1.8.C)

The farmer decides she may no longer need the shed as very little is stored in it.
If she takes the shed down she is trying to determine how much grazing area
she would gain.

Calculate the amount grazing area gained by removing the shed. Determine the percentage gained from the original configuration if the shed is removed. Write a convincing argument for why or why not the shed should be removed.

- Write the equations you used to solve the problem. List and define all variables.
- Use numbers, drawings, equations in your written argument to the farmer.

Equations and Variables use	ed:	· · ·
Street = L X W	Stad 3 7 x 4	Circle = 7- p2 (conflat)
and stade of stade	23011.3	Cirtle = 3.4(81) = 200.96 n2
h= hz=f	Total - used	= Gain-al
w = width	200. 96 700 -	
Written Argument:	200. 96 260.50	3752
by remaining the share	E Think she was	so, of the stensord the charles and green that good for her good if
	8	
8		

Safe Driving

Different roads have different speed limits for various reasons. The primary reason is the relationship between the speed of a vehicle and the time it takes the vehicle to come to a full stop. Other factors that affect the stopping time include road conditions and braking efficiency.

Investigators gather information and make estimates at the scene of an accident to determine if vehicles were traveling at unsafe speeds. Information includes measuring the length of the tire's skid marks which represent the total stopping distance. Estimates are made for the drag factor caused by road conditions and the braking efficiency of the vehicles. Investigators can then estimate a vehicle's speed using mathematical equations.

One of these equations, $S = \sqrt{30Tfn}$, can be used to estimate the speed of the vehicle based on the length of the skid marks, the drag factor, and braking efficiency. In the equation:

S = the speed of the vehicle in miles per hour

T = the total stopping distance in feet based on the length of the skid marks

f = the drag factor

n = the braking efficiency

Another equation, $T = S + \frac{S^2}{20}$, can be used to estimate the total stopping time based on the speed of the vehicle. In the equation:

T = the total stopping distance in feet

S = the speed of the vehicle in miles per hour

(A1.7.D)

1a. Investigators often use a graph to quickly determine the expected length of the skid marks, which represent the total stopping distance, based on the speed of a vehicle based. This is difficult when the equations are not both solved for the same variable.

Solve the equation $S = \sqrt{30Tfn}$ for T.

Show the algebraic steps you took to solve the equation.

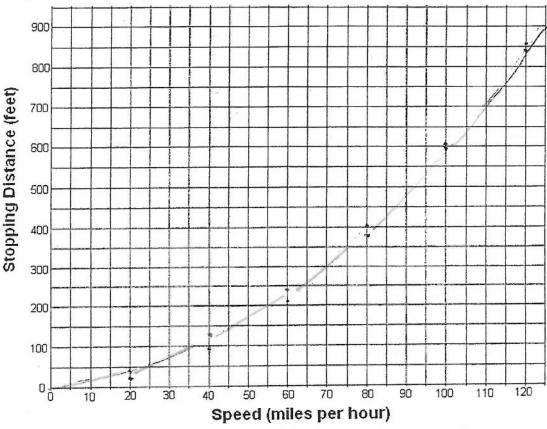
$$\frac{1. s^{2} = (\sqrt{3074}n)^{2}}{2. s^{2} = 3674n} = \frac{s^{2}}{(30)(4)n}$$

(A1.1.C,A1.3.B)

2a. Investigators graph these equations to model common situations. One of these common situations is a 4-door vehicle stopping on dry pavement. Dry pavement has a drag factor of approximately 0.7 and the average 4-door vehicle has a braking efficiency of 80%.

One first step in creating such a graph is making a table of values.

Complete the tables of values for both equations when f = 0.7 and n = 0.8. Round all answers to the nearest tenth of a foot.


S	T
20	23.81
40	95.24
60	214.29
80	380.95
100	595.24
120	857.14

Ι =	$=S+\frac{1}{20}$
S	T
20	40
40	120
60	240
80	400
100	600
120	340

2b. A table, however, does not show as many values as a graph.

Graph both equations, $S = \sqrt{30Tfn}$ and $T = S + \frac{S^2}{20}$, for values of S between 0 and 120 to represent the stopping distance of a 4-door vehicle on dry pavement.

Speed vs. Stopping Distance of 4-door Vehicles on Dry Pavement

 Explain the advantages of both a table of data <u>and</u> corresponding graph when investigating an accident.

A table gives exact values for a given speed.
I graph allows you to determine any value
on the I read specific speed value car responds
to it stopping distance on the line.

(A1.1.D)

3a. The graph shows the general relationship between speed and stopping distance of a 4-door vehicle on dry pavement is very similar for both equations. However, there is one speed for which the stopping distance is the same for both equations.

Determine the exact speed (to the nearest tenth) of a 4-door vehicle on dry pavement that, for both equations, the stopping distance is exactly the same.

Show how you algebraically solved the problem.

$$S = \sqrt{30(7/4)}n$$

$$T = \frac{S^2}{30(7/4)}$$

$$T = \frac{S^2}{30(7/4)}$$

$$S^2 = \frac{S^2}{3$$

3b. Officer Davis, an accident investigator, responded to a call of a car hitting a deer. After he arrived and found no one, including the deer, was seriously injured, he began his investigation. He measured the skid marks made by the vehicle, and they were approximately 290 feet long. The car must have been moving fast enough that 290 feet was not enough space to stop. Officer Davis estimated the drag factor to be 0.65 because there was a little rain on the road. He also estimated the braking efficiency of the car was 85%.

Use the equation, $S = \sqrt{30Tfn}$ to determine the speed the car was traveling and the equation, $T = S + \frac{S^2}{20}$, to determine the minimum total braking distance that would have been needed for the car to stop without hitting the deer, based on the speed it was traveling.

Show how you algebraically determined the minimum distance.

$$S = \sqrt{30(7.0)}(6)n$$

$$= \sqrt{30(7.0)}(6)(7.0)$$

$$S = 69.3 \text{ miles/hr}$$

$$T = 8 + 8^{2}$$

$$= 69.3 + 69.3^{2}$$

$$= 309.64 \text{ f}$$